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ABSTRACT

.... ()
I

/

Spatially random models provide an alternative to the more tradition_/.eterministic models used to

describe robot arm dynamica. These alternative models can be used to_ftablish a relationship between

the methodologies of estimation theory and robot dynamics. A newd_::_ of algorithms for many of the
fundamental robotics problems of inverse and forward dynamics, inverse linematics, etc. can be developed

that use computations typical in estimation theory. The algorithnm make extensive use of the difference

equations of Kalman filtering and Bryson-Frasier smoothing to conduct spatial recursions. The spatially
random models ate very easy to describe and ate based on the amumption that all of the inertial (D'Alembert)

forces in the system are represented by a spatially distributed white-noise model. The models can _ be used

to generate numerically the compmite multibody system inertia matrix. This is done without resorting to the
more common methods of deterministic modeling involving Lagrangian dynamics, Newton-Euler equations,

etc. These methods make substantixt_Use of human knowledge in derivation and manipulation of equations

of motion for complex mechanical systems. In contrast, with the spatially random models, more primitive

(i.e., simpler and less dependent on mathematical derivations) locally specified computations result in the
emergence of a global collective system behavior equivMent to that obtained with the deterministic models.

1. INTROD_'TIO N

Recently, an equivalence has been discovered be)Aveen estimation theory and recursive robot arm dy-

namics Ill, as summarized in the following table/

/
/ !

Equivalen/(e Between Optimal Estimation
and

Rec/ursive Roboa_dArm Dynamics

ESTIMATION

States z(k)

Co-States A(k)

Measurements r(k)

Transition Matrix _b(k, k- 1)

Process Error Covariance M(k)

Known Input b(k)

State-to-Output Map H(k)

ROBOT DYNAMICS

Spatial Forces

Spatial Accelerations

Joint Moments

Spatial .lacobian

Spatial Inertia Matrix

Bias Spatial Force

State-to-Joint-Axis Map

A spatial force z(k) is a 6-dimensional vector consisting of three pure moment components and three

force components. The argument k refers to a representative body k in a multibody system. Similarly, A(k)

is a 6-dimensional vector of three angular acceleration components and three linear acceleration components.

The joint moments r(k) are due to external sources acting at the joints. The spatial transition matrix serves
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to propagate spatial forces within a body [I] in an inward dir_tion from joint _ - I to joint k. Its transpose
serves to props•ate spatial accelerations in an opposite direetkm. The 6-by-6 matrix M(k) represents the

spatial inertia o/' body k about joint k. The stat_to-output map H(k) is a l-by-6 vector ths_ projects the

spatial forc_i'n_ I_J_o_l_ht along tKe joint axis. The bias fores b(k) is due to nonline_ veJocity and

gravity dependent effects [1].
The spatial inertin matrix and the transition matrix amociated with this system are defined m

\--,(h)i_k)

in which 1(6) is the body k inertia about joint k; re(k) is the body k num; L(k) is the vector from joint k

to j,_int k - l; and p(k) is the vector from joint t to the body k ma_ center. The symbol/J denotes the

3-by-3 identity.
A spatially random state space model for the multibody system is

z-(L) = _(t,t - t)z+(t - t) +,_(t) (1.I)

.*(k) = .-(k) (1.2)

in which z-(k) is the value of the spatial force on the negative side of joint k, and z+(k - I) is the value of

the spatial force on the positive side of joint k - I. The "4-# superscript indicates ths_ the corresponding

force is evaluated at a point immediately adjacent to joint k and toward the base of the multibody system.

Similarly, the "-" superscript indicates that the corresponding variable is evaluated on the negative side of

joint t. Note that z+(k - I) and z-(t) refer to spatial forces that &re acting on body k due to the adjacent
bodies k - I and k + I respectively. Equation (1.2) expresses continuity of the spatial force in crewing •

joint connecting two adjacent bodies.
The above is a linear model that reflects a balance of the forces that are acting on body k. T_e inertial

forces are represented by a spatial white-noise process whose mean and covariance are

E[w(t)] = b(k) and E[D(k)D(k) T] =- M(t) (1.3)

with _(k) = ,_(k) - b(t). The mean value of the inertial force w(/Q is set equal to the bias force 6(6).

The coy•fiance of the inertial force is set equal to the spatial inertia matrix. The output, or measurement,

equation
T(t) = U(_)z+(k) (1.4)

completes a description of the stochastic model. In this model, the active joint moment r(k) plays the
role of the measurement in a linear state space system. Since the joint moments are known exactly, the

corresponding measurement equation is free of measurement noise.
The above model can be cast in the more compact notation

X=$W and T=IfX (1.5)

where W, X, and T are the composite vectors W = [oa(1).....00(N)], X = [z(1).....z(N)] and T =

it(1).....I"(N)].Here, N representsthe totalnumber of bodies in the multibody system. The composite

process errorvector W has a mean and coy•fiancegiven by

E(W) = b and E[_'] =Q (16)
o
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.he_ _= [6(i),..., b(#)]. The e#-by4# Uo_ di.son-' m_r= 0 "defi_ed .. _ = a_,[M(1) ..... M(N)].
Its typical 6-by-6 diagonal block M(k) is the spatial inertia of body k. The matrix ÷ is a causal (i.e., lower

tri_lar) _rix ddi_d --

° '÷ = ÷(2,1) u ... (1,7)

\÷(,1) _',2) ...

The closely related ¢ompesite state-to-output map H m (1.5) is defined M H = d/ag[H(l) ..... H(N)].

This model is now used to investigate a number d relationships between estimation theory and robot

arm dynamic,.
2. CONDITIONAL MEAN ESTIMATION

The estimation problem to be solved here is to estimate the process error vector W and the state X,

given the meisurements T. This corresponds to the dynamics problem of finding the inertial forces (due

to accelerations) and the spatial forces, given the joint moments. The optimal estimates are obtained by
mesas of the conditional expectations E(W/T) and E(X/T). It is relatively simple to compute these two

conditional expectations, although care his to be exercised due to the non-zero mean of the inertial force

W. By methods outlined in [2], it can be established that

E(X/T) = _b + G(T- limb) (2.1)

in which G is the "Kalman" gain

G = RH'(HRH') -t and R = _bQ¢" (2.2)

This is the estimate d the spatial forces given the applied joint moments. Note that the estimator equations

have a predictor-corrector architecture. The prediction term is due to the bias force b in (2.1). This term

"predicts" the cumulative spatial bias force on any given body due to the biis force acting on all of the
preceding bodies. The covariance of the estimation error inherent in this "open-loop" predicted estimate is

E[(x - Cb)(X - _)'] = ¢q¢" = R (2.3)

The prediction term is said to be open-loop because it is baaed only on the system model and does not

depend on the measurement T. The effect of measurements is accounted for in the correction term involving

the Kalman gain in (2.1). The Kalman gain determines the weight of the correction term, when this is added

to the prediction term, to arrive at the final state estimate E(X/T). The N-by-N matrix HRH" that needs

to be inverted to compute the Kalman gain turns out to be the comFoeite muitibody system inertia matrix.

To compute the covaciance of the estimation error after correction has occurred, observe first that

X - E(X/T) = (I -GH)¢W (2.4)

is the estimation error. Its corr_ponding covariance is

P = (I - GH)R(I - GH)" (2.5)

Alternatively, this becomes

P = (I - GH)R = R(I - GH)" = R - RH'(HRH')-tHR (2.6)

Note that HP = O, PH" = O, HPH" = 0 which imply that the estimation error at the joints vanishes. This

reflects the lack of measurement noise in the measurement Equation (1.4).

The conditional-mean estimate for the inertial forces is given by

E(W/T) = b + Q_" H'( H RH')-t(T - H _b) (2.?)
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estimate is made up of two elements. First is the element due to the bias force b. Second is the element
due to the active moments T. To examine these two effects more closely, define the joint angle aceeleratioue

as

a - M-t(T- H_b) where M - BRIt" (2_)

Ob,_,rve that the matrix M, whose inversion is required to compute the joint angle accelerations, is the

exmapmite multibody system inertia matrix. In addition, observe [I] thst the joint angle acceleratio_ = and

the spatial accelerations A are related by
= _'H'a (2.9)

Based on these definitions, the estimate for the inertial forces becomes

E(W/T) -- b 4. Q)t (2.10)

The covariance of the inertial forceestimation error is obtained by arguments very similar to these used
to arrive st (2.4). Observe first that W = W - E(W/T) = [I - Q¢'H'(HRIt')-t H¢]W is the estimation

error. Its covariance is
E[WW'] Q - Q_'H'M'tH_ (2.11)

The foregoing are "batch" solutions to the estimation problem, in the sense that all of the measurements

are processed simultaneously. This implies that the composite system inertia matrix must be inverted in s
batch mode. An alternative is provided by the sequential solution outlined below.

3. SEQUENTIAL ESTIMATION

The sequential solution ,processes the measurements (the applied moments) one at a time. In doing this,
it does not require numerical inversion of the N-by-N system inertia matrix. Instead, the haertia matrix is

factored as

M = (t + tO)O(1 + K') (3.1)

in which D is an N-by-N diagonal matrix, and K is a lower-triangular matrix. The matrices K and D in this

factorisation are generated using a suitably defined Kalman filter. This factorization of a ¢ovariance into a

product of a causal factor, a diagonal matrix, and the anti-causal adjoint factor is strongly reminiscent of

the celebrated [5] Gohberg-Krein factorization. Applications of this result to estimation problems have been

investigated by Kailath [6]. Once this factorization of the system inertia matrix is achieved, the corresponding
inverse can be computed easily. The central result is that

(t + K) -t = t- L (3.2)

where L is a lower- triangular causal matrix generated by the same Kalman filter that generates K. This

implies that the inertia matrix inverse can be expressed as

_--t = (I - L')D-t(I - L) (3.3)

The central aim of this section is to outline how to obtain this result. Only the major results are

presented. The detailed arguments leading to the results will be presented elsewhere by the author.

Result 3.1. The state covariance matrix R = _Q¢," can be expressed as

R = r + @v + r@" (3.4)

Here, 4_ is the system model matrix obtained by subtracting the 6N.by-6N identity from the matrix in

(1.7). The matrix r is a 6N-by-6N block diagonal matrix r = diag[r(l) ..... r(N)] whine blocks r(k) satisfy

the recursive relationships
r+(0) = 0

v-(k) = cb(k,k - l)r+(k - l)_bT(k,k - 1) + M(k) (3.5)

r+(k)= r-(_)

Define now the block-diagonal matrix P = diag[P(1),..., P(N)] whine diagonal blocks P(k) satisfy the

discrete Pdccati equation

P-(k) = _(k,k - l)P+(k - 1)_r(k,k - 1) + M(k)

D(k) = H(k)P-(k)Hr(k) (3.6)

P+(k) = P-(k)- P-(k)Hr(k)H(k)P-(k)/D(k)

with the "initial" condition P+(0) = O.
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R = P + OP + PO" + OPHD-tHpTr (3.7)

Defiae now the trmadtion matrix _(k, m) by means of the Kslnam nlteriag equations

_(k,t) = /

¢(,-,,- 1+) = ÷(k,,- l)

#(, +,,-) = x - _(t)H(t)

in which g(k) b the Kslman gain
g(k) = P-(k)HT(k)D-t(k)

Define also the related ¢ompoeite matrix

(3.9)

(3.1o)

o• = ¢(2,1) o ... (3.11)

\_(,1) _(_,2) ...

These two definitions can be used to establish the following identity.

Result 3.4. The "open-loop" and "closed-loop" trarmition nmtrices ¢b tad qPare related by

• =(z-_H)4 (3.12)

where g = Lq(1).... ,g(N)] is the matrix of KJlnum gains.

Result 3.5. The lower triangular factor I + K can be/nveried as

' (I+ K) -t = ! -L (3.13)

in which L is the lower triangular matrix

L = H_PH*D -t (3.14)

This also implies that K = L + KL, K = L + LK, and LK = KL.

The above sequence of results fit the necessary ingredient to establish the recursive factorization of
the inverse of the composite system inertia matrix as in (3.3).

4. FILTERING AND SMOOTHING

Typically, the composite system inertia matrix is inverted to solve what is referred to M the forward
dynamics problem. This problem consists of computing a set of joint angle accelerations given a corresponding
set of applied joint moments. The joint angle accelerations a and the applied joint moments T are related
by

a = (I - L')D-Z(I- L)T (4.1)

where a = [a(1),..., a(N)] is the vector of joint angle accelerations. This states that the joint moments must
be processed by means of a two-stage computation. The first stage represents filtering and is characterized
by the factor (I - L).

The second stage represents smoothing and is characterized by the factor (I - L').
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Filterinf. This stage produces an "innovations" process defined as

e- = (I - L)T (4.2)

It produces also the filtered state estimate

Z = qPPH'D-IT = q_gT (4.3)

The components z(k) of Z = [z(1) .... , z(N)] satlafy the Kalman filter equations [1]

z-(k) = _b(/_,/: - 1):+(/: - l) + b(/_) (4.4)

z+(t) = :-(t) + 0(t)e-(t) (4.s)

in which e-(/:) are the elements of the innovations vector e- = [e-(1) ..... e-(N)]. Multiplication of the
innovations process by the inverse of the diagonal matrix D produces the residuals

e + = D-le - (4.6)

These residuals axe processed in the smoothing stage that follows.

Smoothing. This corresponds to multiplication of the residuals by the anti-causal factor (I - L') to
obtain the jotat angle accelerations, i.e.,

a = (I - L')e + (4.7)

A spatial difference equation which is baaed on (4.7) can be obtained by re-introducing the co-state variables
defined earlier. The co-state variables _ and the residuals e + are related by

= q_" H'e + (4.8)

Use of this in (4.7) implies that
a = e + - 9"A (4.9)

This last relationship expresses the joint angle accelerations in terms of the residuals and the co-etate

variables. Furthermore, (4.8) can be used to infer that the co-state variables satisfy the difference equation

A+(k- 1) = _br(k,/:- l)A-(k) (4.10)

A-(I:) = A+(k) + Hr(k)e+(k) (4.11)

with the terminal condition _+(N) = 0. These equations are referred to as the Bryson-Frazier smoother

equations [4]. Their application to problems in robot dynamics is discussed in more detail in [1].

5. COVARIANCE ANALYSIS

The aim here is develop formulas to compute the covaxiance of several relevant quantities (state. state

estimation error, innovations, etc.) discussed in previous sections. The stochastic model (1.5) is assumed as

a starting point. As in earlier discussions, the results axe stated without proof.

Result 5.1. The composite system inertia matr/x M is the covariance of the measurement process, i.e.,

M = E(T'I') -- HRH ° (5-0

This result has an interesting interpretation. It states that the collective system behavior, as represented

by the system inertia, emerges from the covariance of the output T of the spatially random model (1.5). It

therefore provides a means to compute the in .:tia matrix numerically by direct simulation of the stochastic

model. From such a simulation, the inertia matrix would emerge (without conducting the more traditional

manual derivation of the equations of motion).
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ILmsult 6.2. The spatial inertia matrix P pwduced by the Riccati equa_iop is equa/to the covaziance o/"

the _ estimation error, i.e.,

E[(X - Z)(X - Z)'] = e + VP + eV" (5_)

The corresponding mean-square estL, natlon error is

E[(X - Z)*(X - Z)] = T,[P] (5.3)

R_ult 6.3. The innovations procesa has a covariance given by

E[(e-)(e-)'] - D (5.4)

Result 5.4. The covariance o[ the co-states/s

E(_') = _'H'D-_H_ = A + Aqr + &A (5.5)

in which A = diag[A(1) ..... A(N)]. The diagonal blocks A(k) satisfy

A-(k) = [I - g(k)U(k)]T A+(k)[I - 9(k)H(k)] + HT (k)H(k)/D(k) (5.6)

A+(& - 1) = @T(k, k - 1)A-(k)@(k, k - 1) (5.7)

with the terminal condition A+(N) = 0.

6. CLOSED-FORM INEK'rlA MATRIX INVERSE

The foregoing result= can be used to obtain in closed form the inverse of the composite multibody system
inertia. This is done in terms of the covariance matrices P and A of the previous section.

Result 6.1. The inverse o£ the system inertia ma_r/x can be expressed as

M -t = D -z + g'Ag + g*@'(Ag - H'D -1) + (.q'A - D-XH)etg (6.1)

Alternatively, it can be expressed as M -t = D-I HSH'D -I where

S = P + PAP + P_I"(AP - I) + (PA - I)_IP (6.2)

This result is quite similar to that obtained in [1] by more detailed methods. The result has an interesting

potential application in robot dynamics analysis and in control design. The equations of motion for the
multihody system representing a robot arm are typically written, neglecting bias forces and accelerations

due to nonlinear velocity and gxavity dependent effects, in the form

Ma = T (6.3)

where a is the set of joint angle accelerations, and T is the set of applied joint moments. The primary

reason for the widespread use of such an equation is that many of the "known methods for deriving equations

of motion result in a matrix equation of this form. The equation consistently involves the presence of a

composite system inertia matrix. There is, however, nothing intrinsic m the multibody dynamics problem

that would make the presence of an inertia matrix in the equations of motion Completely inevitable. In

fact, Result 6.1 shows how to compute the inverse of the inertia matrix directly, without having to evaluate

the inertia matrix first and then having to invert it. It is therefore possible, by using this result, to arrive

directly, without numerical inversion of the inertia matrix, at a set of motion equations of the form

a = M-IT (6.4)

This is potentially a very useful result, since the system in (6.4) is much easier to work with, in simulation

and control design, for instance, than the equivalent system in (6.3).
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7. CONCLUDING REMARKS

The use of spatially distributed random models has been explored in saaly_ing robot arm dynamics.
Based on such models a previously undiscovered relationship has been established between estimation theory
sad reeursive robot arm dynamics. Many of the fundamental problems in robot dynamics can be approached
using the techniques of estimation theory. The interaction between these two areas has not been recognized
before and leads to many useful insights, such as the equivalence of covsriancs sad spatial inertia. The
numerical properties of the new algorithms emersing from the estimation approach to robot dynarni¢_ are
under investigation.
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